
Trojan-tolerant Hardware
+ Supply Chain Security in Practice 

Vasilios Mavroudis
Doctoral Researcher, UCL

Dan Cvrcek
CEO, Enigma Bridge



Who we are

Vasilios Mavroudis
Doctoral Researcher, UCL

Dan Cvrcek
CEO, Enigma Bridge

George Danezis
Professor, UCL

Petr Svenda

Assistant Professor, MUni

CTO, Enigma Bridge



Highlights

▪ The private life of keys

▪ Weak links of the supply chain

▪ Lessons learned from airplanes

▪ Demo of our crypto hardware

▪ Protocols, Maths & Magic

▪ Politics, Distrust & Hardware Security



The Private Life of Keys

1. Someone designs an integrated circuit (IC)

2. IC is fabricated

3. IC is delivered to hardware vendor

4. Vendor loads firmware & assembles device

5. Device is sent to customer

6. Customer generates and stores key on the device



The Private Life of Keys

1. Someone designs an integrated circuit (IC)

2. IC is fabricated

3. IC is delivered to hardware vendor

4. Vendor loads firmware & assembles device

5. Device is sent to customer

6. Customer generates and stores key on the device

Any attack in these steps can compromise the key!



Hardware Security Modules

Physical computing device that safeguards and manages digital 
keys for strong authentication and provides cryptoprocessing.

Features:

▪ Cryptographic key generation, storage, management

▪ Tamper-evidence, Tamper-resistance, Tamper-response

▪ Security Validation & Certification

Crypto Operations are carried out in the device

No need to output the private keys!



Hardware Security Modules

Common Applications 

- Public Key Infrastructures

- Payment Processing Systems

- SSL Connections

- DNSSEC

- Transparent Data Encryption

Cost

- Hardware (>$10k)

- Integration Cost

- Operational/Support



HSM Guarantees

1. Someone designs an integrated circuit (IC)

2. IC is fabricated

3. IC is delivered to hardware vendor

4. Vendor loads firmware & assembles device

5. Device is sent to customer

6. Customer generates and stores key on the device



What could go wrong?

▪ Bugs

▪ Backdoors/HT?

CVE-2015-5464

The HSM allows remote authenticated users to bypass 
intended key-export restrictions …



Proposed Solutions

▪ Trusted Foundries

 Very expensive

 Prone to errors/bugs

▪ Split-Manufacturing

 Still Expensive

 Again prone to errors/bug

▪ Post-fabrication Inspection

 Expensive (+ re-tooling)

 A huge pain, doesn’t scale



Proposed Solutions

▪ Trusted Foundries

 Very expensive

 Prone to errors/bugs

▪ Split-Manufacturing

 Still Expensive

 Prone to errors/bugs

▪ Post-fabrication Inspection

 Expensive (+ re-tooling)

 A huge pain, doesn’t scale

Arms Race

 Adversaries always one step forward

 Can never be 100% certain



A solution from the sky (not the c loud)

Lockstep systems are fault-tolerant computer systems that 

run the same set of operations at the same time in parallel.

▪ Dual redundancy
allows error detection and error correction

▪ Triple redundancy

automatic error correction, via majority vote 

→ Triple Redundant 777 Primary Flight Computer



Not for Security

Fault-tolerant systems are built for safety

and the computations are simply replicated.

Not enough for security!



Not for Security

Fault-tolerant systems are bad for security:

- The private key is generated/stored in each IC

- Device is as secure as its weakest link 

- Increase the attack surface



Our Solution

1. Someone designs an integrated circuit (IC)

2. IC is fabricated

3. IC is delivered to hardware vendor

4. Vendor loads firmware & assembles device

5. Device is sent to customer

6. Customer generates and stores key on the device



Ingredients of the Solution

1. Hardware Components (IC)

 Independent Fabrication

 Non-overlapping Supply Chains

 Programmable

 Affordable

 Bonus if COTS

2. Cryptographic Protocols

 No single trusted party

 Full Distribution of Secrets

 Distributed Processing

 Provably Secure (i.e., Math)



Smart Cards

Many Independent Manufacturers

 Private Fabrication Facilities

 Disjoint Supply Chains (location, factories, design)

Programmable Secure Execution Environment

 NIST FIPS140-2 standard, Level 4

 Common Criteria EAL4+/5+ 

Off-the-shelf Cost $1-$20



Multiparty Computation Protocols

Distributed Operations

Random number Generation

Key Pair Generation 

Decryption 

Signing

Provably Protect against

All-1 Malicious & Colluding parties

All Malicious & non-colluding parties







Many Smart Cards

Components

- 120 SmartCards

 40 Groups of 3 Cards

 1.2Mbps dedicated inter-IC buses

- FPGA manages the communication bus

 1Gbit/s bandwidth for requests 



Custom boards 
with 120 JCs



JavaCards
- FIPS140-2 Level 3
- CC EAL5+



FPGA
JavaCard→TCP



Gigabit link to 
untrusted

Linux server



Geographically Distributed IC Control



mpc.enigmabridge.com

Giving smart-cards an infrastructure

LAS VEGAS (192.168.42.10) CAMBRIDGE UK (84.92.209.143)

MPC RESTful server

MacBook-2





mpc.enigmabridge.com

Giving smart-cards an infrastructure

LAS VEGAS (192.168.42.10) CAMBRIDGE UK (84.92.209.143)

MPC RESTful server

MacBook-2

- ARM
- Intel
- SPARC



Key Generation

Normal Operation



mpc.enigmabridge.com

Giving smart-cards an infrastructure

LAS VEGAS

MPC RESTful server
MacBook-2





Key Generation

Attack Mode



mpc.enigmabridge.com

Visualizing Cryptography

MPC RESTful server

MacBook-2

Node-red
- HTTP requests (switch evil)
- MPC key generation
- web-socket servers

ICs with Hardware Trojans 







Tolerance vs Runtime



Scalabil ity





Key Points

- No single IC is trusted with a secret (e.g., private key)

- Misbehaving ICs can be detected by honest ones

- If one IC is excluded from any protocol, user can tell

Bonus: Minimize interaction between ICs for performance



Sharing a Secret

- Split a secret in shares

- The secret can be reconstructed later

- Without sufficient shares not a single bit is leaked

- Splitting Parameters:

 How many shares the secret is split into (n)

 How many shares you need to reconstruct the secret (t)

In our case: Each 3 ICs hold shares for a secret



Classic Key Generation

Single IC System

1. Bob asks for new key pair

2. Backdoored IC generates compromised key

3. Private Key is “securely” stored

4. Weak Public key is returned

Problems

- Malicious IC has full access to the private key

- Bob can’t tell if he got a “bad” key

Generate a 
key-pair
for me!



Distributed Key Generation

ICs holding

key shares

Public Keys

*THE* Public Key

+

1

2

4

3



Distributed Key Generation

Key Points

- No single IC is trusted with a secret (e.g., private key) ✔

- Misbehaving ICs can be detected by honest ones ✔

- If one IC is excluded from any protocol, user can tell ✔

Bonus: Minimize interaction between ICs for performance ✘



Classic Decryption

Single IC System

1. Bob asks for ciphertext decryption

2. Backdoored IC decrypts ciphertext 

3. Bob retrieves plaintext

The IC needs full access to the private 

key to be able to decrypt ciphertexts.

Decrypt this
email



Distributed Decryption

ICs holding

key shares

Decryption 

Shares

Help me
decrypt this

email

1



Distributed Decryption

ICs holding

key shares

Decryption 

Shares

Help me
decrypt this

email

1

2



Distributed Decryption

ICs holding

key shares

Decryption 

Shares

Help me
decrypt this

email

1

2

3



Distributed Decryption

ICs holding

key shares

Decryption 

Shares

1

2

3

4



Distributed Decryption

Key Points

- No single IC is trusted with a secret (e.g., private key) ✔

- Misbehaving ICs can be detected by honest ones -

- If one IC is excluded from any protocol, user can tell ✔

Bonus: Minimize interaction between ICs for performance ✔



Classic Signing

Single IC System

1. Bob asks for document signing

2. Backdoored IC signs the plaintext

3. Bob retrieves signature

The IC needs full access to the private 

key to be able to sign plaintexts.

Sign this
document



Distributed Signing

ICs holding

key shares

0



Distributed Signing

ICs holding

key shares

Signature 

Shares

1

2

3

Help me
sign this

document



Distributed Signing

ICs holding

key shares

Signature 

Shares

1

2

3

4



Distributed Signing

Key Points

- No single IC is trusted with a secret (e.g., private key) ✔

- Misbehaving ICs can be detected by honest ones ✔

- If one IC is excluded from any protocol, user can tell ✔

Bonus: Minimize interaction between ICs for performance ✔



How we made it scale

Key A



How we made it scale

Key A Key B



How we made it scale

Key A Key B Key C



How we made it scale

Key A Key B Key C Key D



How we made it scale

....

Key A Key B Key C Key D Key Z



How we made it scale

....

But how can all these groups have shares for the same key? 

Bob’s Key Bob’s Key Bob’s Key Bob’s Key Bob’s Key



Key Replication

A1

A3

A2

B1

B2

B3

1. Group A generates a public key

2. A1, A2, A3 send their shares to B1, B2, B3

3. Each IC in B receives shares from A1, A2, A3

4. Each IC in B combines the 3 shares and 

retrieves its private key

Pub KeyPub Key

A B



Key Replication

A1

A3

A2

B1

B2

B3

1. Group A generates a public key

2. A1, A2, A3 send their shares to B1, B2, B3

3. Each IC in B receives shares from A1, A2, A3

4. Each IC in B combines the 3 shares and 

retrieves its private key

5. A1, A3 and B2 collude

The adversary retrieves the secret!

Pub KeyPub Key

A B



Key Replication

A1

A3

A2

B1

B2

B3

1. Group A generates a public key

2. Then each IC in A splits its private key in three 

shares and sends them to B1, B2, B3

3. Each IC in B receives shares from A1, A2, A3

4. Each IC in B combines the 3 shares

and retrieves its private key share

The full public keys of A and B are the same!

Pub KeyPub Key

A B





“We can guarantee security if there is at least 

one honest IC that is not backdoored or faulty.”



“We can guarantee security if there is at least 

one honest IC that is not backdoored or faulty.”

What if all ICs are malicious?



Government-level adversaries

- Deep access to fabrication facilities

- Very sophisticated techniques

- Very hard to detect their Backdoors/Trojans

- Very secretive; highly classified

- Won’t share their backdoor details



Government-level adversaries

- Deep access to fabrication facilities

- Very sophisticated techniques

- Very hard to detect their Backdoors/Trojans

- Very secretive; highly classified

- Won’t share their backdoor details

- Unlikely to collude with anyone



“We can guarantee security even when all ICs

are malicious, if at least one does not collude.”





Conclusions & Future

New crypto hardware architecture

▪ For the first time, tolerates faulty & malicious hw

▪ Decent Performance 

▪ Scales nicely; just keep adding ICs

▪ Suitable for commercial-off-the-shelf components

▪ Existing malicious insertion countermeasures are very welcome!



DIY

Poor man’s HSM

1. Buy a USB hub

2. 3-4 card readers (or more)

3. Buy cards from various manufacturers 

4. Download our MPC applet

5. Review the code

6. Install the applet into your cards

7. Enjoy your homemade HSM!



Q & A



Trojan-tolerant Hardware
+ Supply Chain Security in Practice 

Vasilios Mavroudis
Doctoral Researcher, UCL

Dan Cvrcek
CEO, Enigma Bridge



Trojan-tolerant Hardware
+ Supply Chain Security in Practice 

Vasilios Mavroudis
Doctoral Researcher, UCL

Dan Cvrcek
CEO, Enigma Bridge



Smart Cards

- 8-32 bit processor @ 30MHz+

- Persistent memory 32-500kB (EEPROM)

- Volatile fast RAM, usually <10kB

- True Random Number Generator (FIPS140-2)

- Cryptographic Coprocessor (3DES,ECC,AES,RSA-2048,...)

- Limited attack surface

 Clear API

 small trusted computing base

EEPROM

CPU

CRYPTO

SR
A

M R
O

M

RNG



Controller Controller Controller

Security domain Manager (virtualisation)

External API (JSON)

Registration 
proxy

Monitoring 
dashboards

Wrapper (e.g. 
PKCS11)

Language
binding

Plugging it into a cloud service

FIPS140-2 L3 
hardware

FIPS140-2 L3 
hardware

FIPS140-2 L3 
hardware



The Birth of a Distributed Key

1. User asks for new key pair

2. ICs generate their key pairs

3. ICs exchange hashes of their shares

4. ICs reveal their shares

5. ICs verify each others’ shares

6. ICs compute the common public key

7. ICs return the common public keys

8. Bob verifies that all the keys are same



Distributed Decryption

1. Bob asks for ciphertext decryption

2. His authorization is verified

3. ICs compute their decryption shares

4. Bob receives the decryption shares 

5. Bob combines them to decrypt



Distributed Decryption

Properties

- No single authority gains access

to the full private key

- ICs check on each other

- If one IC abstains, decryption fails



Distributed Signing I

Caching

1. Bob sends a caching request

2. The ICs verify Bob’s authorization

3. Generate a random group element 
based on j 

4. Bob sums the random elements

Properties

- Caching for thousands of rounds (j)

- Bob stores Rj



Distributed Signing II

Signing

1. Bob asks for document signing & 
sends Rj, j, and the hash of m

2. ICs verify his authorization

3. ICs check if j has been used again

4. ICs compute their signature share

5. Bob sums all signature shares

Properties

- All ICs must participate

- Significant speed up with caching



Kil l Switches

IEEE Spectrum

http://spectrum.ieee.org/semiconductors/design/the-hunt-for-the-kill-switch


Kil l Switches

wired.com

https://www.wired.com/2008/05/kill-switch-urb/


Redundancy & Availabil ity

A1

A3

A2

B1

B2

B3

✘

✘

✘


